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The problem solved is that of the interaction between a laminar boundary 
layer on a semi-infinite flat plate and an oncoming shear flow of finite lateral 
dimensions bounded by uniform irrotational flow extending to infinity. The 
pressures along the plate and upstream of the same are deduced (to a linearized 
approximation) in the form of a Fourier integral based on the solution of a simpler 
periodic flow problem. It is found that while the assumption of an infinite, uniform 
shear flow gives asymptotically correct interaction pressure gradients on the 
plate near the leading edge, the pressure level even there (compared to upstream 
infinity) is strongly influenced by t,he boundedness of the external shear. At 
distances from the leading edge which are large compared to the lateral extent 
of the shear flow, the pressure gradients along the plate are shown to be vanish- 
ingly smaller than in the infinite shear case. 

1. Introduction 
The problem of the development of a boundary layer on a semi-infinite flat 

plate submerged in an incompressible, parallel shear flow may at first appear to 
be no more than a routine extension from the standard case where the un- 
disturbed stream is not sheared at  all. It has become known, however, that a 
satisfactory solution of this problem, even to that degree of approximation in 
which the effect of the outside shear is taken into account only for the first time, 
demands more than a mere reworking of the ordinary boundary-layer t'heory. 

For one thing, since any sort of a boundary layer on the plate effectively con- 
stitutes an obstacle of finite width placed in the sheared stream, one must in 
general expect some cross-flow to occur upstream of the plate, with the result 
that the total pressure-and, consequently, the downstream velocity-of the 
fluid arriving in the proximity of the leading edge will not be exactly the same as 
that found at  a large distance directly ahead of the plate. This complication is 
rather analogous to the ' displacement effect' of a Pitot tube placed in a shear flow 
(e.g. Hall 1956). 

The other, and in a sense more immediate, complication caused by the free- 
stream shear is one that was first pointed out by Li (1956) for the special case of 
an oncoming parallel shear flow of infinite extent but of constant vorticity. 
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Not only does the tlsual Blasius profile have to be so modified as to conform to 
the prescribed vorticity away from the plate, but one has also to reckon with 
a certain streamwise pressure gradient stemming from an interaction of that 
boundary layer with the external flow. 

The present paper will deal only with the latter point, partly because the 
first complication may almost certainly be divorced from the analysis of the 
boundary layer itself through a redefinition of the relevant free-stream velocity 
as that currently found near the leading edge; besides, that effect would not 
even arise if the velocity profile were symmetric about the plate. The main reason 
for this emphasis, however, is that the induced pressure gradient calculated by Li 

Velocity profile 

y=h-E 
y=-h 

FIGURE 1. Flow situation. 

seems still to be the subject of some controversy. Possibly because Li’s reasoning 
was not made sufficiently explicit, the very notion of such a pressure gradient 
was soon challenged by Glauert (1957). Later, Murray (1961) proved that the 
pressure gradient proposed by Li would indeed occur provided the uniformly 
sheared flow extended laterally to infinity. However, there has as yet been no 
similar confirmation in any more realistic situation where the sheared region of 
the oncoming flow was limited in some manner; Glauert (1962) has therefore 
again questioned the relevance of Li and Murray’s pressure gradient to problems 
arising in practice. 

Our objective here will be to clarify this interesting, if somewhat academic, 
question through an analysis of the flow situation pictured in figure 1. In  this 
example, the oncoming shear flow, zlz0 = Uo+ Aly[, extends only to a lateral 
distance h from the plate and is bounded on either side by an irrotational flow 
of speed wzo = U, = U, +Ah;  the assumption of symmetry has obviously been 
made to avoid the possibility of cross-flow already mentioned above. We shall 
be particularly interested in determining the pressure gradient along the plate 
which results from the development of the boundary layer. Before we state the 
conclusions, though, a few words about the method are relevant. From the 
point of view of boundary-layer theory, the influence of external vorticity must 
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properly be classified as a ‘second-order’ effect when the inverse square root of 
the Reynolds number is taken as the expansion parameter. It is now well 
understood (Van Dyke 1962) that it would be inadequate to confine one’s atten- 
tion to the boundary layer alone in seeking to estimate this effect. Instead, one 
must also consider how the boundary layer affects the outer flow, whose deflexion 
can be the only source of the second-order streamwise pressure gradients on a 
flat plate. (Kuo 1953 has made it clear that it just happens that the resulting 
interaction pressure is anomalously zero, for a semi-inhite flat plate in an ordi- 
nary irrotational stream, but the same need not be true in the presence of free- 
stream vorticity.) To determine this second-order effect in the current problem, 
i t  would in principle appear safest to apply the expansion procedure developed 
by Van Dyke (196%), which guarantees a systematic fitting between the inner 
(viscous) and the outer (inviscid) flow solutions. However, the present work 
will not make use of the full formalism of this very general method.’ Instead, 
we will endeavour to show how the induced pressure field can be estimated by 
considering only the immediate influence of the ‘ first-order ’ boundary-layer 
displacement thickness upon the external flow. 

It will be assumed here that the approaching stream is only weakly sheared in 
comparison with the typical vorticity found in the boundary layer; this pre- 
supposes that we are concerned only with locations not too far downstream, SO 

that the latter will not have had the opportunity to decrease sufficiently to have 
become comparable with the former. Thus, to a first order, the boundary layer 
will still be of the standard Blasius type, and the velocity v y  normal to the plate 
just outside this layer will behave as x-4. The ‘outer’ flow problem may then be 
formulated as the effect of a source distribution along the plate, of the strength 
Cx-4, upon an essentially inviscid outer shear flow; alternatively, the sources 
can be imagined replaced by a slender parabolic body. It is also because of this 
weak shear assumption that the idealized discontinuities of vorticity at  y = 0, h 
in the original flow in figure 1 can be shown to cause no serious error; it  may be 
estimated that any action of the viscosity to round them off results in a flux 
deficiency (or excess) that is smaller than that arising near the plate by approxi- 
mately the ratio of the free-stream shear to the boundary-layer vorticity. 

From the present calculations, it  will be found that for distances from the 
leading edge which are small compared with h, the pressure gradient, and hence 
the augmented shear stress, are indeed those which were first calculated by Li. 
This is not too surprising, since for a small enough region near x = y = 0 the 
outer shear flow ought to appear unbounded; however, quantitatively, this region 
of approximate validity of the Li-Murray pressure gradient turns out to be 
remarkably small. On the other hand, for distances downstream from the leading 
edge which are large compared to h (but small enough so that the boundary- 
layer vorticity is still appreciably larger than that of the outer flow), it  will be 
seen that the pressure gradient has decreased to a vanishingly small multiple 
of the Li-Murray value, thus confirming Glauert’s suspicions. 

An effect not discussed previously will also be discovered to be a consequence 
of the finiteness of the oncoming shear region. Despite the fact that the symmetry 
of the problem has precluded any lateral displacement of the central streamline, 
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we will see that the magnitude of the free-stream velocity just behind the leading 
edge of the plate differs appreciably from the value far (that is to say, many 
widths of the shear layer) upstream along y = 0. What is more, this difference 
will be seen to increase without bound with increasing width of the shear flow 
(keeping vorticity constant), although the speed difference between the vicinity 
of the leading edge and any point aJixed distance upstream on the dividing stream- 
line tends to zero in the same limit. The peculiar way in which the limiting case 
of an infinite outer shear flow is thus approached, along with the fact that the 
present effect seems comparable in importance to the aforementioned ‘vorticity ’ 
effect, points to the danger involved in applying the results of an unbounded 
shear flow analysis to an actual flow situation. 

2. Shear flow bounded by a uniform stream 

0 in figure 1 (because of symmetry), and given that 
The mathematical problem is now well established : Considering only the region 

y 

v,(x < 0, y = 0) = 0 and v,(x > 0, y = 0) = Cx-4 ( 1 )  

(where C is a small positive constant), and that the disturbance velocities should 
tend to zero at  large distances, we wish to determine, implicitly, the full inviscid 
flow field, and in particular, the pressures and the streamwise pressure gradient 
near y = 0. 

The technique of solution to be employed here relies on the fact that the cross- 
flow velocity from equation (1) may be described equally accurately as 

for all negative and positive x (e.g. Erdelyi 1954, pp. 10, 65). Thanks to this 
Fourier representation, our immediate task reduces to the question of how the 
oncoming, supposedly inviscid flow would react to a simple normal velocity like 

z)!,(x, 0) = sin Ex (3) 
imposed at  its boundary. 

To answer the latter question, we introduce two disturbance stream functions, 
and $2. The first of these will describe the total velocity components in the 

(4) 

region on the shear flow as 

whereas the other will denote the same in the potential flow region by 

Since the vorticity in either part of the flow is-and remains-constant, both 
of these disturbance stream functions must separately obey the Laplace equa- 
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tion. The forms of $l and $2 with vanishing disturbance velocities a t  y + 00 

and corresponding to the velocity of equation (3), may therefore be surmised as 

(6) I $,(x, y) = (k-l cosh ky + C, sinh Icy) cos kx, 
$2(x, y )  = C,e-ky cos kx, 

where only the constants Cl and G', remain to be determined. 
We shall ascertain the values of these constants from the physical require- 

ment that (a) the normal velocity, wy, and ( b )  the streamwise pressure gradient 
should be the same on both sides of the interface separating the shear and 
potential flow regions. Strictly speaking, such a matching ought to be carried 
out at the (unknown) displaced location of that  boundary; however, we now 
presume that the disturbance is infinitesimal, and so this joining shall instead 
be performed along y = h. There, by matching the y-velocities, we find from 
equations (6) that 

wuy = - (cosh kh + kCl sinh kh)  sin kx = - kC,e-"" sin Ex, ( 7 )  

whereas the x-momentum equation gives, in linearized form, 

= - k.Ci,(sinh kh + kCl cosh kh)  sin kx 
+ A(cosh kh + kC, sinh kh) sin kx 

= k .C< kC, e-kh sin kx. (8) 

Solving equations ( 7 )  and (8) ,  we obtain 
kU, ekh - A cosh kh 
kUlekh - A sinh kh ' 

kc\ = - 

and a rather similar expression for kC2. These, together with equation (61, pro- 
vide a full description of the disturbance velocity field corresponding to the 
stipulated normal velocity of equation (3).  

From elementary solutions like this one, it should now be possible to synthesize 
the entire flow field associated with the imposed velocities of equations (1 )  
or ( 2 ) .  However, our predominant interest here lies only in the pressures 
developed on or near the x-axis. Accordingly, we deduce from the x- and y- 
momentum equations and equations ( 6 )  that the simple flow discussed above 
implies the following pressures along the line y = 0:  

n 

= p [ ( A / k ) -  U0kC1]coskx, (10) 

where, it  should be noted, the constant of integration has finally been so selected 
as to imply a vanishing pressure as y + 00. In  a similar manner, the pressure 
corresponding to an imposed velocity 

vy(x, 0 )  = coskx ( 1 1 )  
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may be shown to differ from that of equation (10) only through the factor 
COB kx being replaced by - sin kx. Hence, by compounding these elementary 
pressures in the same manner as the velocity contributions were weighted 
in the integral in equation ( 2 ) ,  the pressure along y = 0, resulting from the inter- 
action of the basic flow with the normal velocities of equations (1) or (3) ,  may 
be calculated as 

p ( x ,  0) = (Blr)-*pAC k-8 G(kh, q)  (cos kx - sin kx)  dk, (12) 

and q = (U1-Uo)/U1 = Ah/U1. (14) 

As a partial check, we note that 

G(kh, q )  N kh/q( 1 - q )  as kh + 0 

and that G(kh,q)  - (1  - q )  kh/q as kh -+ co; 

hence, the integral in equation (12) does in fact converge for all values of x ,  
except zero. 

Nevertheless, equation (12) is of a form which makes its interpretation 
awkward in the limit as the shear, A ,  and hence the parameter q, tend to zero. 
To render it more meaningful, we introduce a new function 

H(kh,  q)  = I - ( 1  - q)  e-kh [ekh - q sinh kh/kh]-l (15) 

such that G(kh,q)  = (1 -q)  kh/q+H(kh ,q )  = ( k U , / A ) + H ( k h , q ) .  (16) 

Considering that equations (1) and ( 2 )  have already implied that 

(27~)-6 k-h (cos kx - sin kx) dk  
!ow 

equals ( - x)-i when x < 0, but vanishes for all positive x, the pressure equation 
may then be rewritten as 

( 1 7 )  
where (18) 

P(X, 0) = Po@, 0) +pv(x,  01, 
po(x ,  0) = pUoC( - XI-*  (+ - isgn x), 

and pv(x,O) = (3lr)-hpAC k-$H(kh,q)  (coskx-sinkx)dk. (19) 

The part of the second-order pressure that would arise even in the absence of 
shear, namelypUoC( - x)-$for negative x ,  and none at  all for positive x ,  is given by 
equation (18). The quantity pv in equation (19) clearly represents the vorticity- 
dependent part of the pressure, since H(kh ,q )  remains bounded for all kh as 
q --f 0, so that p v  vanishes for A --f 0. 

3. Unbounded shear flow 
Before we proceed to discuss in detail the implications of the last three equa- 

tions, it  is probably best to digress briefly at this point and to rederive the Li- 
Murray pressure gradient as a basis for comparison. Accordingly, let us imagine 
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that h = 00 from the outset in the situation of figure 1, and let us again seek a 
disturbance stream function which (a) satisfies the Laplace equation, (b) exhibits 
the velocities of equation (1) along y = 0, and (c) involves vanishingly small 
disturbance velocities at  large disturbances. 

It is readily found that the only function that meets all those requirements is 

1C. = - 2 C d  cos (+@, (30) 

where T and 8 are the usual polar co-ordinates such that x = r cos 6 and y = T sin 0,  
From this it follows that the x-component of the inviscid disturbance velocity, 

(31) 

vanishes as 0 --f 0. Consequently, the correct boundary-layer asymptotic con- 
dition, to this order of approximation and for large values of the boundary-layer 
co-ordinate y( Uo/vx)*, indeed is Li’s condition 

‘u, - Uo+Ay.  (33)  

We would particularly like to emphasize that the last result is by no means 
trivial. It states that there is no transversal shift of the velocity profile, in 
spite of the fact that the fluid elements passing just outside the boundary layer 
have obviously been deflected from their original paths by the amount of the 
displacement thickness. Understandably, Glauert (and at  first Li himself 1955) 
intuitively assumed that the particles would tend to preserve their x-velocities 
even as they were shunted sideways; this, however, turns out not to be the case 
near the plate in an infinite shear flow, and a pressure gradient appears instead. 
That gradient is given by 

= -pAv, = -pACx-*, _ -  aP 
ax (33) 

which is the same as that described in Li’s note (1956) and later confirmed by 
Murray (1961). On the other hand, we also observe from equations (21) and 
(33) that the pressure along 0 = zr equals pUoC( - x)-*, provided the pressure at  
upstream infinity is regarded as zero; therefore, the vorticity-dependent part of 
the pressure gradient apparently vanishes identically for x < 0, y = 0 when 
the shear extends to infinity. 

4. Comparison of results 

from equation (19) that the pressure gradient there for x > 0, y = 0 is 
Returning now to our previous example of the bounded shear flow, we deduce 

ap/ax = -pACx-iP(x/h, q ) ,  (34) 
the multiplier of the part we now recognize as the Li-Murray result being 

P(x/h, q )  = (27r- i  [-* H([h/x, q )  (sin 5 + cos [) d[ .  
/Om 

(35) 
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Since it may be seen from equation (15) that H([h/x,y) approaches unity as 
x --f 0, we find that 

lim P(x/h,q) = (2n)-* t - 4  (sin[+cos[)d< = 1. 
xlh-m 

On the other hand, lim F(x/h,q) = 0, 
xlh-m 

(26) 

due to H([h/x,  y) tending to zero as x -+ co. Thus, we conclude that the Li- 
Murray pressure gradient is approached in the downstream vicinity of the 
leading edge, but certainly not far down the plate. 

I -- 

- 

0.1 0.2 0.5 1 2 5 
Distance r / h  

FIGURE 2. Pressure gradient along the plate, expressed as a multiple of the 
Li-Murray result. 

The intermediate behaviour of F(x/h,  q )  is somewhat more difficult to discern, 
except when t,he speed variation across the shear layer is very small, or q N 0. In  
that case, since H([h/x, 0) = 1 - exp ( - 2[h/x), 

it happens that the integral in equation (24) may be evaluated explicitly to 
give (e.g. Erdelyi 1954, pp. 10, 14, 68, 72) 

(28) 

P(x/h,  q 2 0) N 1 - (I/%) [(s - z)$ + (S + z ) J ] ,  (29) 

where x = Ih/x,  s = ( l + z 2 ) $ .  (30) 

This function has been plotted against log (z/h) in figure 2 ,  along with two similar 
multipliers for the cases q = 2 and p = - 3 (or U,/& = 4 and &, respectively) 
obtained by numerical integration of equation (25). 

Figure 2 shows the Li-Murray limit to be approached remarkably slowly as 
z / h  -+ 0; for instance, when x /h  is as small as one-tenth, the Li-Murray result 
still appears to overestimate the pressure gradient by about 15 %. From this 
we can only surmise that the pressure gradient must be quite sensitive to con- 
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ditions at large distances. By contrast, the approach at the other extreme to the 
zero pressure gradient postulated by Glauert seems to be considerably more 
rapid, as exemplified by the fact that 

F(x/h,q = 0) 1-5(h/~)~ as x/h + a. 

Proceeding to the discussion of the vorticity-dependent pressure, p,,, itself, 
we conclude both on physical grounds and from the increasingly oscillatory 
behaviour of the integrand in equation (19) as 1x1 -+ co, that the pressures 
exceedingly far upstream and downstream must in fact be equal. At all other 
locations along the x-axis, p, can be shown to be non-negative, reaching its 
maximum a t  x = 0 with the value 

m 

p,(0, 0) = (2n- - lpAC/  0 k-3H(kh,q)dk.  (31) 

For large h (but a fixed value of A ) ,  that maximum behaves roughly as ht, as 
may be estimated from the full pressure drop along the plate, assuming the Li- 
Murray pressure gradient for 0 < x < h, and none at all for x > h. The same 
increase without bounds may alternatively be deduced from the behaviour of 
H ( k h , q ) ,  which becomes virtually equal to unity in that limit for all but the 
smallest values of k. 

It might be asked how the last conclusion is to be reconciled with the infinite 
shear flow result of $3,  which indicated that the gradient of the vorticity-depen- 
dent pressure vanished everywhere along the half-axis x < 0, y = 0, thereby 
implyingp,,(O, 0 )  should be the same as the pressure far upstream. To help answer 
this, figure 3 shows the full x-behaviour ofp, along y = 0 for several representative 
velocity ratios, Ul/Uo, as determined from repeated numerical integrations of the 
integral in equation (1 9). The curves shown all refer to flows having the same basic 
shear, A ,  and central speed, Uo; however, their values of h are necessarilydifferent. 
The abscissa in figure 3 is the streamwise distance x, normalized with respect to 
a length that equals the height h, for which the velocity in the shear layer (or 
in the linearly extrapolated shear layer, as the case may be) equals twice the 
central speed rb. All pressures have been expressed as multiples of pACht. 

Figure 3 makes it clear that the curious unbounded increase of p,(O, 0) with 
h is not anomalous, but merely reflects a gradual growth of that pressure ahead 
of the plate; this growth is markedly slower than the drop beyond x = 0. (We 
must remember that the singular, pt&C( -x)-& behaviour of the part of the 
pressure which does not depend on A ,  but which would usually swamp p, for 
x < 0, has been excluded from this diagram.) We observe that not only does the 
region in which p, remains approximately equal to p,(O, 0)  apparently extend 
further and further upstream as h + 00, but even that ap,/ax at  x = 0- gives the 
impression (that can be verified from equation (19)) of vanishing in the same limit. 
Thus, there is no obvious contradiction between the infinite shear flow result and 
this one; however, we have now seen in what limited sense only may the pressure 
or the velocity at the leading edge be equated in that case with the values ex- 
ceedingly far upstream. It is interesting also to note that (ap,/ax),=,- is 
obviously non-zero for the moderate values of h shown; this means that the only 
prediction of the infinite shear theory which has been proven valid near the 
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leading edge in the case of a finite shear flow is the leading (singular) term of the 
pressure gradient for x > 0, plus, of course, po(x,  0) as defined in equation (18). 

Finally, as far as second-order boundary-layer theory is concerned, it should 
be emphasized that this discussion also indicates that the proper free-stream 
velocity to be employed at  x = Of when the shear does not extend to infinity is 
not exactly U, but U, minus p,(O,O)/pU,. Although usually quite small, this 

r 4  

-/ 
0 

- 3  -2 -1 0 1 2 3 
Distance z/h, 

FIGURE 3. Vorticity-dependent par t  of the pressure upstream of and along 
the plate. 

velocity change is clearly comparable in magnitude to that resulting from any 
' vorticity-induced ' pressure gradients along the plate and must be considered 
whenever the latter are deemed significant. 
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